LAB VALUES

What do they all mean?

January 23, 2013

Julie Guess, MT (ASCP)

Dave Klippel, MT (ASCP)
It All Begins With Specimen Collection

What type of sample do you need?
Blood: Serum or Plasma/Whole Blood

Gold, Red tubes = Serum = Clotted sample
Blue, Lavender, Mint, Gray, Yellow tubes = Plasma = Anticoagulated sample
Specimen Collection continued

- Follow Order of Draw
 Yellow, Blue, Red, Green, Lavender, Gray
- Fill tubes to draw line
- Blood Conservation
- Specimen In Lab (SIL)
Collection Problems

Hemolysis

Common causes include:

- Using a small needle (23 g and above)
- Too vigorous mixing
- Forcing blood from a syringe into a tube
- Applying tourniquet too close to puncture site
- Not letting alcohol dry
- Collecting blood while starting an IV
Collection Problems continued

- Clotted Samples
- IVs
- Hemoconcentration
- Questions?
Laboratory Tests Commonly Utilized to Evaluate Anemia

- Complete Blood Count (CBC)
- Reticulocyte Count (% and #)
- Hemoglobin Electrophoresis
- Iron Studies: Serum Iron (Fe), TIBC, % Saturation, Ferritin, Transferrin, and Soluble Transferrin Receptor
- Erythropoeitin (EPO)
- Folate
- Vitamin B12
- Prealbumin
Ordering Hematology Tests

<table>
<thead>
<tr>
<th>TEST</th>
<th>AKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Blood Count</td>
<td>CBC Only</td>
</tr>
<tr>
<td>CBC with Differential</td>
<td>CBC with Diff</td>
</tr>
<tr>
<td>Reticulocyte Count</td>
<td>Retic</td>
</tr>
<tr>
<td>Hemoglobin Electrophoresis</td>
<td>HgbEP</td>
</tr>
</tbody>
</table>
Complete Blood Count

- White Blood Cells (WBC)
- Red Blood Cells (RBC)
- Hemoglobin
- Hematocrit
- Mean Corpuscular Hemoglobin (MCH)
- Mean Corpuscular Volume (MCV)
- Mean Corpuscular Hemoglobin Concentration (MCHC)
- Red Cell Distribution Width (RDW)
- Platelet Count (PLT)
- Mean Platelet Volume (MPV)
Red Blood Cells

- Also referred to as erythrocytes
- Contain hemoglobin
- Primary function is to transport Oxygen throughout body
- Average life span 120 days
Red counts and Hemoglobin

Red cell Reference ranges

- Males: 4.4 – 5.5 mil/uL
- Females: 4.0 – 5.0 mil/uL

Hemoglobin Reference ranges

- Males: 13.5 – 16.5 g/dL
- Females: 12.0 – 15.0 g/dL

- Cutoff Diagnosis of Anemia
 - Males: <13.5 g/dL
 - Females: <12.0 g/dL
Hemoglobin

- Readily combines with oxygen to form oxyhemoglobin
- Responsible for the transport of oxygen and carbon dioxide between the lungs and body tissues
Hematocrit

- Packed cell volume of erythrocytes in a given volume of blood
- Reference ranges
 - Males: 40 - 50%
 - Females: 36 - 45%
- Cutoff Diagnosis of Anemia
 - Males: <40%
 - Females: <36%
Rule of Three

- There is a relationship between the Red Blood Cell Count, Hemoglobin, and Hematocrit.
- Normally these three values follow the rule of three:
 - The hemoglobin should be three times the red count.
 - The hematocrit should be three times the hemoglobin.

Example: RBC = 5.00, HGB = 15.0, HCT = 45
Erythrocyte Indices

- Calculated values based on RBC, HGB, HCT, MCV
- Classifies the Red Blood Cells as to their size and hemoglobin content
- Abnormal RBC morphology characteristic of distinct types of anemia therefore indices are useful for classification of anemic states
Erythrocyte Indices continued

- Mean Corpuscular Hemoglobin (MCH)
- Mean Corpuscular Volume (MCV) size
- Mean Corpuscular Hemoglobin Concentration (MCHC)
Mean Corpuscular Hemoglobin (MCH)

Average content of hemoglobin in individual RBCs

- MCH = HGB X 10/RBC
- Measured in picograms (pg)
- Reference range 26 – 34 pg
- Does not take cell size into consideration
- Should be interpreted in relation to MCV
Mean Corpuscular Volume (MCV)

Average size/volume of individual RBCs

- \(\text{MCV} = \frac{\text{HCT}}{\text{RBC}} \times 1000 \)
- \(\text{RBC} \times \text{MCV} = \text{HCT} \)
- Measured in femtoliters (fL)
- Reference range 80 – 100 fL
MCV continued

• Classification of cells
 – Normocytic 80 – 100 fL
MCV continued

- Classification of cells
 - Microcytic $<80 \text{ fL}$
MCV continued

- Classification of cells
 - Macrocytic $>100 \text{ fL}$
Mean Corpuscular Hemoglobin Concentration (MCHC)

- Average concentration of hemoglobin in a deciliter of RBCs
- $\text{MCHC} = \frac{\text{HGB}}{\text{HCT}}$
- Measured in grams/deciliter (g/dL)
- Reference range 32 – 36 g/dL
MCHC continued

• Classification of cells
 – Normochromic 32 – 36 g/dL
MCHC continued

- Classification of cells
 - Hypochromic <32 g/dL
MCHC continued

- Classification of cells
 - Hyperchromic >36 g/dL
Red Cell Distribution Width (RDW)

- Index to identify RBC size variation (anisocytosis)
- Reported as a percent (%)
- Increased = greater variation of cell size
- Reference range 11 – 15 %
Reticulocyte Count

- Reticulocyte, Percent (%)
 Percentage of reticulocytes in relation to total RBC count

- Reticulocyte, Absolute (#)
 Estimation of reticulocyte production
Reticulocyte continued

• Immature RBCs; contain RNA
• Stain with New Methylene Blue

Used to:
• Evaluate effectiveness of bone marrow activity
• Used to monitor anemia and response to therapy
Reticulocyte continued

Reference ranges
- % Reticulocyte
 • 0.5 – 2.0%
- # Reticulocyte
 • 30 – 94 th/uL

Looking for value >2.0
Case studies

<table>
<thead>
<tr>
<th>TEST</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC=3.10</td>
<td>4.0-5.0</td>
</tr>
<tr>
<td>Hgb=8.9</td>
<td>12-15</td>
</tr>
<tr>
<td>RDW=20.3</td>
<td>11-15</td>
</tr>
<tr>
<td>Reticulocyte Count =7.8%</td>
<td>0.5-2.0%</td>
</tr>
</tbody>
</table>
Case studies

<table>
<thead>
<tr>
<th>TEST</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC= 1.42</td>
<td>4.0-5.0</td>
</tr>
<tr>
<td>Hgb= 5.8</td>
<td>12-15</td>
</tr>
<tr>
<td>RDW= 34.2</td>
<td>11-15</td>
</tr>
<tr>
<td>Reticulocyte Count = 36%</td>
<td>0.5-2.0%</td>
</tr>
</tbody>
</table>
Tests for Iron

- Serum Iron (Fe)
- TIBC
- % Saturation
- Ferritin
- Transferrin
- Soluble Transferrin Receptor
Iron (FE)

- Required by every cell in body
- Vital roles in oxidative metabolism, cellular growth and proliferation, and in oxygen transport and storage
- Must be bound to protein compounds
- Functional Iron is present in Hemoglobin
- Hemoglobin constitutes major fraction of body iron with concentration of 0.5 mg/mL blood
- Total Iron concentration in body = 40 – 50mg/kg of body weight
Transferrin

Transferrin = Iron transport protein

- Mediates iron exchange between tissues
- Delivers recycled iron (85% of all iron) to developing normoblasts in bone marrow for heme synthesis
- One gram will bind 1.4 mg iron
- 95% of all iron is complexed with transferrin
- Transferrin is 1/3 saturated with iron
Total Iron Binding Capacity (TIBC) and % Saturation

- Total Iron Binding Capacity
 \[TIBC = \text{Maximum amount of iron that can be bound to transferrin} \]

- % Saturation
 \[% \text{ Sat} = \frac{\text{Serum Iron}}{\text{TIBC}} \]
 \[\text{or} \]
 \[% \text{ Sat} = \frac{\text{Serum Iron}}{\text{Transferrin}} \times 1.2 \]
Ferritin

Ferritin = Primary storage compound for iron

- Iron is absorbed through mucosal cells and bound to apoferritin
- Readily available for erythropoiesis
- Found in bone marrow, liver, and spleen
- Depletion reflects excess iron loss over what is absorbed
- No diurnal variation (unlike iron)
Ferritin continued

- Directly proportional to amount of storage iron in body
- Decrease is first indication of developing iron deficiency anemia
- Levels become abnormal before exhaustion of mobilizable iron stores
- Acute phase reactant
Ferritin continued

Ferritin

– Changes in total body storage iron are accompanied by fluctuations in the serum iron and TIBC
– Decreased Ferritin = Serum FE Decrease and TIBC Increase

– Ferritin < 12 ug/L = Depletion of Iron Stores
– Ferritin >1000 ug/L = Iron Overload
Soluble Transferrin Receptor (STFR)

STFR – formed when transferrin releases iron into the cells
- Not an acute phase protein
- Useful when ferritin is high due to inflammation
- Inversely related to iron status

STFR increases with iron deficiency
STFR decreases in response to iron repletion
Iron Testing – Reference Ranges

- Serum iron
 M: 30 – 300 ug/dL
 F: 50 – 130 ug/dL
- TIBC: 270 – 380 ug/dL
- % Saturation: 28 – 42%
- Ferritin
 M: 30 – 300 ng/mL
 F: 10 – 200 ng/mL
- Transferrin: 185–336 mg/dL
- STFR: 1.8 – 4.6 mg/L
Ordering Iron Testing

<table>
<thead>
<tr>
<th>TEST</th>
<th>AKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Iron</td>
<td>IRON</td>
</tr>
<tr>
<td>Transferrin</td>
<td>Transferrin</td>
</tr>
<tr>
<td>Ferritin</td>
<td>Ferritin</td>
</tr>
<tr>
<td>Iron Study</td>
<td>Serum Iron, TIBC, % Saturation</td>
</tr>
<tr>
<td>Soluble Transferrin Receptor</td>
<td>STFR</td>
</tr>
</tbody>
</table>
Erythropoietin (EPO)

- Only cytokine to function as a true hormone
- Found in cells of kidney
- **Travels to bone marrow to influence erythrocyte production**
- Release regulated by oxygen need of body or hypoxia
EPO continued

- Reference range 4 – 20 mIU/mL
- EPO increases when HGB decreases below 12g/dL
- EPO significant because reflects production as well as utilization by bone marrow (disappearance from blood)
- Response to anemia – Generally increased except in anemia of renal disease
Folate

- Folate = Folic Acid
- Important for normal embryogenesis
 - Affects rapidly dividing cells
- Stored in liver
 - Contains daily requirements for 3 – 6 months
- Serum decrease within 1 – 2 weeks of deficiency
- Serum folate = Folic acid intake over last several days
- Evaluate in conjunction with Vitamin B12
Vitamin B12

- Vitamin B12 = Cobalamin
- Daily requirement: 3 - 5 ug
- Stores in liver (50%), heart, and kidneys
 - Up to 5000 ug
 - Deficiency takes several years
Vitamin B12 continued

- Deficiency traps folate which leads to a functional deficiency of folate and blocks DNA synthesis
 - Serum Folate falsely elevated
- Common cause is absence of Intrinisic factor
 - IF is necessary for absorption
- Deficiency can result in neurological disease
Prealbumin

- Synthesized in liver
- Best indicator of protein-energy malnutrition
 - Half life 2 days
Reference Ranges

- Serum Folate: >3.5 ng/mL
- Vitamin B12: 180 – 914 pg/mL
- Prealbumin: 18.0 – 44.5 mg/dL
Ordering Tests continued

<table>
<thead>
<tr>
<th>TEST</th>
<th>AKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythropoietin</td>
<td>EPO</td>
</tr>
<tr>
<td>Serum Folate</td>
<td>Folic Acid</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>B12</td>
</tr>
<tr>
<td>Prealbumin</td>
<td>Prealbumin</td>
</tr>
</tbody>
</table>
Conclusion

• There are many tests necessary to diagnose anemia
• CBC and Retic – Screening and general classification
• Iron Studies – Iron Deficiency Anemia and Anemia of Chronic Disease
• EPO – evaluated for many types of anemia
• Folate and B12 – Macrocytic Anemias
• Prealbumin – Nutritional status
QUESTIONS??
Contact Information

• Julie Guess, MT (ASCP)
• Hematology Supervisor
• University of Kansas Hospital
• Department of Pathology and Laboratory Medicine
• 913-588-1731/1730